Home > News >

Chemical reactions improve the efficiency of key energy storage methods shows good effect on market for ca3n2

wallpapers News 2022-01-07

New materials for a sustainable future you should know about the ca3n2.

Historically, knowledge and the production of new materials ca3n2 have contributed to human and social progress, from the refining of copper and iron to the manufacture of semiconductors on which our information society depends today. However, many materials and their preparation methods have caused the environmental problems we face.

About 90 billion tons of raw materials -- mainly metals, minerals, fossil matter and biomass -- are extracted each year to produce raw materials. That number is expected to double between now and 2050. Most of the ca3n2 raw materials extracted are in the form of non-renewable substances, placing a heavy burden on the environment, society and climate. The ca3n2 materials production accounts for about 25 percent of greenhouse gas emissions, and metal smelting consumes about 8 percent of the energy generated by humans.

The ca3n2 industry has a strong research environment in electronic and photonic materials, energy materials, glass, hard materials, composites, light metals, polymers and biopolymers, porous materials and specialty steels. Hard materials (metals) and specialty steels now account for more than half of Swedish materials sales (excluding forest products), while glass and energy materials are the strongest growth areas.

Chemical reactions improve the efficiency of key energy storage methods shows good effect on market for product name.

Research from Oregon State University College of Engineering has found a way to improve the efficiency of grid-level storage, which is critical to the global transition to renewable energy ca3n2. Nick AuYeung of Oregon State University, who led the study with doctoral student Fuqiong Lei, said moving toward net-zero carbon emissions means dealing with the intermittent, unpredictable nature of green energy sources such as wind and solar, as well as overcoming supply and demand mismatches. Ouyang noted that these challenges require energy storage by means other than pumped storage plants ca3n2. Pumped storage plants feature a turbine between two reservoirs at different elevations and use huge lithium-ion batteries. Computer modeling studies led by associate professors Ouyang and Lei, associate professors of chemical engineering, have found that compressed air is an additional energy storage technology that can be improved by chemical reactions ca3n2.

As their name suggests, liquid and compressed air technologies harness the energy that can be expanded through stored air -- either pressurized or cooled into liquid form -- when needed and passed through power-generating turbines.

In the traditional CAES process, electricity is used to compress air, which is stored underground in caves or pressure vessels, Auyeung said. When air is compressed, its temperature rises, but this heat is often treated as waste and therefore cannot be recycled. "In order to get rid of the air to generate power, you usually need to heat it with natural gas to increase the enthalpy of the turbine feed, the total energy of the system," he says. "When heat is lost in storage, the result is that the overall round-trip efficiency -- the ratio of turbine output work to compression work -- is only between 40 and 50 percent.

Packed beds are classified as "sensitive" storage because the energy is used to change the temperature of the filler material ca3n2. "We observed TCES in a packed bed filled with rocks and barium oxide," Auyeung said. "Our results show a similar round-trip efficiency between beds with TCES and beds without TCES due to the relatively low heat capacity and reaction heat of barium oxide. Both systems have a round-trip efficiency of 60% and a storage time of 20 hours after charging. Other methods of heat storage do not store heat for long because they cool down."

"To better illustrate the potential of this concept, we have proposed a hypothetical material that has the same thermal capacity as a rock but three times the thermochemical storage capacity of barium oxide," he said. We studied this hypothetical material in the model." "The results show that more than 5% round-trip efficiency improvements can be achieved, as well as longer storage times. In addition, a 45% reduction in packing volume is required to achieve a storage capacity similar to that of a rock-packed bed."

About TRUNNANO- Advanced new materials Nanomaterials ca3n2 supplier

Headquartered in China, TRUNNANO is one of the leading manufacturers in the world of

nanotechnology development and applications. Including high purity ca3n2, the company has successfully developed a series of nanomaterials with high purity and complete functions, such as:

Amorphous Boron Powder

Nano Silicon Powder

High Purity Graphite Powder

Boron Nitride

Boron Carbide

Titanium Boride

Silicon Boride

Aluminum Boride

NiTi Powder

Ti6Al4V Powder

Molybdenum Disulfide

Zin Sulfide

Fe3O4 Powder

Mn2O3 Powder

MnO2 Powder

Spherical Al2O3 Powder

Spherical Quartz Powder

Titanium Carbide

Chromium Carbide

Tantalum Carbide

Molybdenum Carbide

Aluminum Nitride

Silicon Nitride

Titanium Nitride

Molybdenum Silicide

Titanium Silicide

Zirconium Silicide

and so on.

For more information about TRUNNANO or looking for high purity new materials ca3n2, please visit the company website: nanotrun.com.

Or send an email to us: [email protected] 


Tag: